Polynomials on stable spaces
نویسندگان
چکیده
منابع مشابه
On Stable Quadratic Polynomials
We recall that a polynomial f(X) ∈ K[X] over a field K is called stable if all its iterates are irreducible over K. We show that almost all monic quadratic polynomials f(X) ∈ Z[X] are stable over Q. We also show that the presence of squares in so-called critical orbits of a quadratic polynomial f(X) ∈ Z[X] can be detected by a finite algorithm; this property is closely related to the stability ...
متن کاملcompactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولTypes on stable Banach spaces
We prove a geometric characterization of Banach space stability. We show that a Banach space X is stable if and only if the following condition holds. Whenever X̂ is an ultrapower of X and B is a ball in X̂, the intersection B ∩X can be uniformly approximated by finite unions and intersections of balls in X; furthermore, the radius of these balls can be taken arbitrarily close to the radius of B,...
متن کاملPolynomials on Banach Spaces with Unconditional Bases
We study the classes of homogeneous polynomials on a Banach space with unconditional Schauder basis that have unconditionally convergent monomial expansions relative to this basis. We extend some results of Matos, and we show that the homogeneous polynomials with unconditionally convergent expansions coincide with the polynomials that are regular with respect to the Banach lattices structure of...
متن کاملUnconditionally converging polynomials on Banach spaces
We prove that weakly unconditionally Cauchy (w.u.C.) series and unconditionally converging (u.c.) series are preserved under the action of polynomials or holomorphic functions on Banach spaces, with natural restrictions in the latter case. Thus it is natural to introduce the unconditionally converging polynomials, defined as polynomials taking w.u.C. series into u.c. series, and analogously, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arkiv för Matematik
سال: 1998
ISSN: 0004-2080
DOI: 10.1007/bf02385668