Polynomials on stable spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Stable Quadratic Polynomials

We recall that a polynomial f(X) ∈ K[X] over a field K is called stable if all its iterates are irreducible over K. We show that almost all monic quadratic polynomials f(X) ∈ Z[X] are stable over Q. We also show that the presence of squares in so-called critical orbits of a quadratic polynomial f(X) ∈ Z[X] can be detected by a finite algorithm; this property is closely related to the stability ...

متن کامل

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Types on stable Banach spaces

We prove a geometric characterization of Banach space stability. We show that a Banach space X is stable if and only if the following condition holds. Whenever X̂ is an ultrapower of X and B is a ball in X̂, the intersection B ∩X can be uniformly approximated by finite unions and intersections of balls in X; furthermore, the radius of these balls can be taken arbitrarily close to the radius of B,...

متن کامل

Polynomials on Banach Spaces with Unconditional Bases

We study the classes of homogeneous polynomials on a Banach space with unconditional Schauder basis that have unconditionally convergent monomial expansions relative to this basis. We extend some results of Matos, and we show that the homogeneous polynomials with unconditionally convergent expansions coincide with the polynomials that are regular with respect to the Banach lattices structure of...

متن کامل

Unconditionally converging polynomials on Banach spaces

We prove that weakly unconditionally Cauchy (w.u.C.) series and unconditionally converging (u.c.) series are preserved under the action of polynomials or holomorphic functions on Banach spaces, with natural restrictions in the latter case. Thus it is natural to introduce the unconditionally converging polynomials, defined as polynomials taking w.u.C. series into u.c. series, and analogously, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Arkiv för Matematik

سال: 1998

ISSN: 0004-2080

DOI: 10.1007/bf02385668